| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] B = C <-> [. A / x ]. B = C ) ) |
| 2 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] y e. B <-> [. A / x ]. y e. B ) ) |
| 3 |
2
|
abbidv |
|- ( z = A -> { y | [ z / x ] y e. B } = { y | [. A / x ]. y e. B } ) |
| 4 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] y e. C <-> [. A / x ]. y e. C ) ) |
| 5 |
4
|
abbidv |
|- ( z = A -> { y | [ z / x ] y e. C } = { y | [. A / x ]. y e. C } ) |
| 6 |
3 5
|
eqeq12d |
|- ( z = A -> ( { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } <-> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) ) |
| 7 |
|
nfs1v |
|- F/ x [ z / x ] y e. B |
| 8 |
7
|
nfab |
|- F/_ x { y | [ z / x ] y e. B } |
| 9 |
|
nfs1v |
|- F/ x [ z / x ] y e. C |
| 10 |
9
|
nfab |
|- F/_ x { y | [ z / x ] y e. C } |
| 11 |
8 10
|
nfeq |
|- F/ x { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } |
| 12 |
|
sbab |
|- ( x = z -> B = { y | [ z / x ] y e. B } ) |
| 13 |
|
sbab |
|- ( x = z -> C = { y | [ z / x ] y e. C } ) |
| 14 |
12 13
|
eqeq12d |
|- ( x = z -> ( B = C <-> { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } ) ) |
| 15 |
11 14
|
sbiev |
|- ( [ z / x ] B = C <-> { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } ) |
| 16 |
1 6 15
|
vtoclbg |
|- ( A e. V -> ( [. A / x ]. B = C <-> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) ) |
| 17 |
|
df-csb |
|- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
| 18 |
|
df-csb |
|- [_ A / x ]_ C = { y | [. A / x ]. y e. C } |
| 19 |
17 18
|
eqeq12i |
|- ( [_ A / x ]_ B = [_ A / x ]_ C <-> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) |
| 20 |
16 19
|
bitr4di |
|- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |