Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbceqi.1 | |- A e. _V |
|
| sbceqi.2 | |- [_ A / x ]_ B = D |
||
| sbceqi.3 | |- [_ A / x ]_ C = E |
||
| Assertion | sbceqi | |- ( [. A / x ]. B = C <-> D = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqi.1 | |- A e. _V |
|
| 2 | sbceqi.2 | |- [_ A / x ]_ B = D |
|
| 3 | sbceqi.3 | |- [_ A / x ]_ C = E |
|
| 4 | sbceqg | |- ( A e. _V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
|
| 5 | 1 4 | ax-mp | |- ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) |
| 6 | 2 3 | eqeq12i | |- ( [_ A / x ]_ B = [_ A / x ]_ C <-> D = E ) |
| 7 | 5 6 | bitri | |- ( [. A / x ]. B = C <-> D = E ) |