Metamath Proof Explorer


Theorem sbceqi

Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbceqi.1
|- A e. _V
sbceqi.2
|- [_ A / x ]_ B = D
sbceqi.3
|- [_ A / x ]_ C = E
Assertion sbceqi
|- ( [. A / x ]. B = C <-> D = E )

Proof

Step Hyp Ref Expression
1 sbceqi.1
 |-  A e. _V
2 sbceqi.2
 |-  [_ A / x ]_ B = D
3 sbceqi.3
 |-  [_ A / x ]_ C = E
4 sbceqg
 |-  ( A e. _V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) )
5 1 4 ax-mp
 |-  ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C )
6 2 3 eqeq12i
 |-  ( [_ A / x ]_ B = [_ A / x ]_ C <-> D = E )
7 5 6 bitri
 |-  ( [. A / x ]. B = C <-> D = E )