Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc | |- ( [. A / x ]. ph <-> A e. { x | ph } ) |
|
2 | elex | |- ( A e. { x | ph } -> A e. _V ) |
|
3 | 1 2 | sylbi | |- ( [. A / x ]. ph -> A e. _V ) |