Metamath Proof Explorer


Theorem sbcex

Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion sbcex
|- ( [. A / x ]. ph -> A e. _V )

Proof

Step Hyp Ref Expression
1 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
2 elex
 |-  ( A e. { x | ph } -> A e. _V )
3 1 2 sylbi
 |-  ( [. A / x ]. ph -> A e. _V )