| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
|- ( [. A / y ]. E. x ph -> A e. _V ) |
| 2 |
|
sbcex |
|- ( [. A / y ]. ph -> A e. _V ) |
| 3 |
2
|
exlimiv |
|- ( E. x [. A / y ]. ph -> A e. _V ) |
| 4 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / y ] E. x ph <-> [. A / y ]. E. x ph ) ) |
| 5 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / y ] ph <-> [. A / y ]. ph ) ) |
| 6 |
5
|
exbidv |
|- ( z = A -> ( E. x [ z / y ] ph <-> E. x [. A / y ]. ph ) ) |
| 7 |
|
sbex |
|- ( [ z / y ] E. x ph <-> E. x [ z / y ] ph ) |
| 8 |
4 6 7
|
vtoclbg |
|- ( A e. _V -> ( [. A / y ]. E. x ph <-> E. x [. A / y ]. ph ) ) |
| 9 |
1 3 8
|
pm5.21nii |
|- ( [. A / y ]. E. x ph <-> E. x [. A / y ]. ph ) |