Step |
Hyp |
Ref |
Expression |
1 |
|
df-f |
|- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
2 |
1
|
a1i |
|- ( X e. V -> ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) ) |
3 |
2
|
sbcbidv |
|- ( X e. V -> ( [. X / x ]. F : A --> B <-> [. X / x ]. ( F Fn A /\ ran F C_ B ) ) ) |
4 |
|
sbcfng |
|- ( X e. V -> ( [. X / x ]. F Fn A <-> [_ X / x ]_ F Fn [_ X / x ]_ A ) ) |
5 |
|
sbcssg |
|- ( X e. V -> ( [. X / x ]. ran F C_ B <-> [_ X / x ]_ ran F C_ [_ X / x ]_ B ) ) |
6 |
|
csbrn |
|- [_ X / x ]_ ran F = ran [_ X / x ]_ F |
7 |
6
|
sseq1i |
|- ( [_ X / x ]_ ran F C_ [_ X / x ]_ B <-> ran [_ X / x ]_ F C_ [_ X / x ]_ B ) |
8 |
5 7
|
bitrdi |
|- ( X e. V -> ( [. X / x ]. ran F C_ B <-> ran [_ X / x ]_ F C_ [_ X / x ]_ B ) ) |
9 |
4 8
|
anbi12d |
|- ( X e. V -> ( ( [. X / x ]. F Fn A /\ [. X / x ]. ran F C_ B ) <-> ( [_ X / x ]_ F Fn [_ X / x ]_ A /\ ran [_ X / x ]_ F C_ [_ X / x ]_ B ) ) ) |
10 |
|
sbcan |
|- ( [. X / x ]. ( F Fn A /\ ran F C_ B ) <-> ( [. X / x ]. F Fn A /\ [. X / x ]. ran F C_ B ) ) |
11 |
|
df-f |
|- ( [_ X / x ]_ F : [_ X / x ]_ A --> [_ X / x ]_ B <-> ( [_ X / x ]_ F Fn [_ X / x ]_ A /\ ran [_ X / x ]_ F C_ [_ X / x ]_ B ) ) |
12 |
9 10 11
|
3bitr4g |
|- ( X e. V -> ( [. X / x ]. ( F Fn A /\ ran F C_ B ) <-> [_ X / x ]_ F : [_ X / x ]_ A --> [_ X / x ]_ B ) ) |
13 |
3 12
|
bitrd |
|- ( X e. V -> ( [. X / x ]. F : A --> B <-> [_ X / x ]_ F : [_ X / x ]_ A --> [_ X / x ]_ B ) ) |