Step |
Hyp |
Ref |
Expression |
1 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
2 |
1
|
a1i |
|- ( X e. V -> ( F Fn A <-> ( Fun F /\ dom F = A ) ) ) |
3 |
2
|
sbcbidv |
|- ( X e. V -> ( [. X / x ]. F Fn A <-> [. X / x ]. ( Fun F /\ dom F = A ) ) ) |
4 |
|
sbcfung |
|- ( X e. V -> ( [. X / x ]. Fun F <-> Fun [_ X / x ]_ F ) ) |
5 |
|
sbceqg |
|- ( X e. V -> ( [. X / x ]. dom F = A <-> [_ X / x ]_ dom F = [_ X / x ]_ A ) ) |
6 |
|
csbdm |
|- [_ X / x ]_ dom F = dom [_ X / x ]_ F |
7 |
6
|
eqeq1i |
|- ( [_ X / x ]_ dom F = [_ X / x ]_ A <-> dom [_ X / x ]_ F = [_ X / x ]_ A ) |
8 |
5 7
|
bitrdi |
|- ( X e. V -> ( [. X / x ]. dom F = A <-> dom [_ X / x ]_ F = [_ X / x ]_ A ) ) |
9 |
4 8
|
anbi12d |
|- ( X e. V -> ( ( [. X / x ]. Fun F /\ [. X / x ]. dom F = A ) <-> ( Fun [_ X / x ]_ F /\ dom [_ X / x ]_ F = [_ X / x ]_ A ) ) ) |
10 |
|
sbcan |
|- ( [. X / x ]. ( Fun F /\ dom F = A ) <-> ( [. X / x ]. Fun F /\ [. X / x ]. dom F = A ) ) |
11 |
|
df-fn |
|- ( [_ X / x ]_ F Fn [_ X / x ]_ A <-> ( Fun [_ X / x ]_ F /\ dom [_ X / x ]_ F = [_ X / x ]_ A ) ) |
12 |
9 10 11
|
3bitr4g |
|- ( X e. V -> ( [. X / x ]. ( Fun F /\ dom F = A ) <-> [_ X / x ]_ F Fn [_ X / x ]_ A ) ) |
13 |
3 12
|
bitrd |
|- ( X e. V -> ( [. X / x ]. F Fn A <-> [_ X / x ]_ F Fn [_ X / x ]_ A ) ) |