| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sbc |
|- ( [. A / x ]. ph <-> A e. { x | ph } ) |
| 2 |
|
dfclel |
|- ( A e. { x | ph } <-> E. y ( y = A /\ y e. { x | ph } ) ) |
| 3 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
| 4 |
|
sbv |
|- ( [ y / x ] ph <-> ph ) |
| 5 |
3 4
|
bitri |
|- ( y e. { x | ph } <-> ph ) |
| 6 |
5
|
anbi2i |
|- ( ( y = A /\ y e. { x | ph } ) <-> ( y = A /\ ph ) ) |
| 7 |
6
|
exbii |
|- ( E. y ( y = A /\ y e. { x | ph } ) <-> E. y ( y = A /\ ph ) ) |
| 8 |
1 2 7
|
3bitrri |
|- ( E. y ( y = A /\ ph ) <-> [. A / x ]. ph ) |
| 9 |
|
dfclel |
|- ( A e. V <-> E. y ( y = A /\ y e. V ) ) |
| 10 |
9
|
biimpi |
|- ( A e. V -> E. y ( y = A /\ y e. V ) ) |
| 11 |
|
simpr |
|- ( ( y = A /\ ph ) -> ph ) |
| 12 |
11
|
ax-gen |
|- A. y ( ( y = A /\ ph ) -> ph ) |
| 13 |
|
19.23v |
|- ( A. y ( ( y = A /\ ph ) -> ph ) <-> ( E. y ( y = A /\ ph ) -> ph ) ) |
| 14 |
13
|
biimpi |
|- ( A. y ( ( y = A /\ ph ) -> ph ) -> ( E. y ( y = A /\ ph ) -> ph ) ) |
| 15 |
12 14
|
mp1i |
|- ( E. y ( y = A /\ y e. V ) -> ( E. y ( y = A /\ ph ) -> ph ) ) |
| 16 |
|
2a1 |
|- ( y = A -> ( y e. V -> ( ph -> y = A ) ) ) |
| 17 |
16
|
imp |
|- ( ( y = A /\ y e. V ) -> ( ph -> y = A ) ) |
| 18 |
17
|
ancrd |
|- ( ( y = A /\ y e. V ) -> ( ph -> ( y = A /\ ph ) ) ) |
| 19 |
18
|
eximi |
|- ( E. y ( y = A /\ y e. V ) -> E. y ( ph -> ( y = A /\ ph ) ) ) |
| 20 |
|
19.37imv |
|- ( E. y ( ph -> ( y = A /\ ph ) ) -> ( ph -> E. y ( y = A /\ ph ) ) ) |
| 21 |
19 20
|
syl |
|- ( E. y ( y = A /\ y e. V ) -> ( ph -> E. y ( y = A /\ ph ) ) ) |
| 22 |
15 21
|
impbid |
|- ( E. y ( y = A /\ y e. V ) -> ( E. y ( y = A /\ ph ) <-> ph ) ) |
| 23 |
10 22
|
syl |
|- ( A e. V -> ( E. y ( y = A /\ ph ) <-> ph ) ) |
| 24 |
8 23
|
bitr3id |
|- ( A e. V -> ( [. A / x ]. ph <-> ph ) ) |