Metamath Proof Explorer


Theorem sbcg

Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf . (Contributed by Alan Sare, 10-Nov-2012) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Assertion sbcg
|- ( A e. V -> ( [. A / x ]. ph <-> ph ) )

Proof

Step Hyp Ref Expression
1 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
2 dfclel
 |-  ( A e. { x | ph } <-> E. y ( y = A /\ y e. { x | ph } ) )
3 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
4 sbv
 |-  ( [ y / x ] ph <-> ph )
5 3 4 bitri
 |-  ( y e. { x | ph } <-> ph )
6 5 anbi2i
 |-  ( ( y = A /\ y e. { x | ph } ) <-> ( y = A /\ ph ) )
7 6 exbii
 |-  ( E. y ( y = A /\ y e. { x | ph } ) <-> E. y ( y = A /\ ph ) )
8 1 2 7 3bitrri
 |-  ( E. y ( y = A /\ ph ) <-> [. A / x ]. ph )
9 dfclel
 |-  ( A e. V <-> E. y ( y = A /\ y e. V ) )
10 9 biimpi
 |-  ( A e. V -> E. y ( y = A /\ y e. V ) )
11 simpr
 |-  ( ( y = A /\ ph ) -> ph )
12 11 ax-gen
 |-  A. y ( ( y = A /\ ph ) -> ph )
13 19.23v
 |-  ( A. y ( ( y = A /\ ph ) -> ph ) <-> ( E. y ( y = A /\ ph ) -> ph ) )
14 13 biimpi
 |-  ( A. y ( ( y = A /\ ph ) -> ph ) -> ( E. y ( y = A /\ ph ) -> ph ) )
15 12 14 mp1i
 |-  ( E. y ( y = A /\ y e. V ) -> ( E. y ( y = A /\ ph ) -> ph ) )
16 2a1
 |-  ( y = A -> ( y e. V -> ( ph -> y = A ) ) )
17 16 imp
 |-  ( ( y = A /\ y e. V ) -> ( ph -> y = A ) )
18 17 ancrd
 |-  ( ( y = A /\ y e. V ) -> ( ph -> ( y = A /\ ph ) ) )
19 18 eximi
 |-  ( E. y ( y = A /\ y e. V ) -> E. y ( ph -> ( y = A /\ ph ) ) )
20 19.37imv
 |-  ( E. y ( ph -> ( y = A /\ ph ) ) -> ( ph -> E. y ( y = A /\ ph ) ) )
21 19 20 syl
 |-  ( E. y ( y = A /\ y e. V ) -> ( ph -> E. y ( y = A /\ ph ) ) )
22 15 21 impbid
 |-  ( E. y ( y = A /\ y e. V ) -> ( E. y ( y = A /\ ph ) <-> ph ) )
23 10 22 syl
 |-  ( A e. V -> ( E. y ( y = A /\ ph ) <-> ph ) )
24 8 23 bitr3id
 |-  ( A e. V -> ( [. A / x ]. ph <-> ph ) )