Metamath Proof Explorer


Theorem sbcgfi

Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbcgfi.1
|- A e. _V
sbcgfi.2
|- F/ x ph
Assertion sbcgfi
|- ( [. A / x ]. ph <-> ph )

Proof

Step Hyp Ref Expression
1 sbcgfi.1
 |-  A e. _V
2 sbcgfi.2
 |-  F/ x ph
3 2 sbcgf
 |-  ( A e. _V -> ( [. A / x ]. ph <-> ph ) )
4 1 3 ax-mp
 |-  ( [. A / x ]. ph <-> ph )