Description: An identity theorem for substitution. See sbid . (Contributed by Mario Carneiro, 18-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcid | |- ( [. x / x ]. ph <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc | |- ( [ x / x ] ph <-> [. x / x ]. ph ) |
|
| 2 | sbid | |- ( [ x / x ] ph <-> ph ) |
|
| 3 | 1 2 | bitr3i | |- ( [. x / x ]. ph <-> ph ) |