Description: An identity theorem for substitution. See sbid . (Contributed by Mario Carneiro, 18-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcid | |- ( [. x / x ]. ph <-> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc | |- ( [ x / x ] ph <-> [. x / x ]. ph ) |
|
2 | sbid | |- ( [ x / x ] ph <-> ph ) |
|
3 | 1 2 | bitr3i | |- ( [. x / x ]. ph <-> ph ) |