Metamath Proof Explorer


Theorem sbcie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie avoids a disjointness condition on x , A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses sbcie2g.1
|- ( x = y -> ( ph <-> ps ) )
sbcie2g.2
|- ( y = A -> ( ps <-> ch ) )
Assertion sbcie2g
|- ( A e. V -> ( [. A / x ]. ph <-> ch ) )

Proof

Step Hyp Ref Expression
1 sbcie2g.1
 |-  ( x = y -> ( ph <-> ps ) )
2 sbcie2g.2
 |-  ( y = A -> ( ps <-> ch ) )
3 dfsbcq
 |-  ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) )
4 sbsbc
 |-  ( [ y / x ] ph <-> [. y / x ]. ph )
5 1 sbievw
 |-  ( [ y / x ] ph <-> ps )
6 4 5 bitr3i
 |-  ( [. y / x ]. ph <-> ps )
7 3 2 6 vtoclbg
 |-  ( A e. V -> ( [. A / x ]. ph <-> ch ) )