| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcie3s.a |
|- A = ( E ` W ) |
| 2 |
|
sbcie3s.b |
|- B = ( F ` W ) |
| 3 |
|
sbcie3s.c |
|- C = ( G ` W ) |
| 4 |
|
sbcie3s.1 |
|- ( ( a = A /\ b = B /\ c = C ) -> ( ph <-> ps ) ) |
| 5 |
|
fvexd |
|- ( w = W -> ( E ` w ) e. _V ) |
| 6 |
|
fvexd |
|- ( ( w = W /\ a = ( E ` w ) ) -> ( F ` w ) e. _V ) |
| 7 |
|
fvexd |
|- ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) -> ( G ` w ) e. _V ) |
| 8 |
|
simpllr |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> a = ( E ` w ) ) |
| 9 |
|
fveq2 |
|- ( w = W -> ( E ` w ) = ( E ` W ) ) |
| 10 |
9
|
ad3antrrr |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( E ` w ) = ( E ` W ) ) |
| 11 |
8 10
|
eqtrd |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> a = ( E ` W ) ) |
| 12 |
11 1
|
eqtr4di |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> a = A ) |
| 13 |
|
simplr |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> b = ( F ` w ) ) |
| 14 |
|
fveq2 |
|- ( w = W -> ( F ` w ) = ( F ` W ) ) |
| 15 |
14
|
ad3antrrr |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( F ` w ) = ( F ` W ) ) |
| 16 |
13 15
|
eqtrd |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> b = ( F ` W ) ) |
| 17 |
16 2
|
eqtr4di |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> b = B ) |
| 18 |
|
simpr |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> c = ( G ` w ) ) |
| 19 |
|
fveq2 |
|- ( w = W -> ( G ` w ) = ( G ` W ) ) |
| 20 |
19
|
ad3antrrr |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( G ` w ) = ( G ` W ) ) |
| 21 |
18 20
|
eqtrd |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> c = ( G ` W ) ) |
| 22 |
21 3
|
eqtr4di |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> c = C ) |
| 23 |
12 17 22 4
|
syl3anc |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( ph <-> ps ) ) |
| 24 |
23
|
bicomd |
|- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( ps <-> ph ) ) |
| 25 |
7 24
|
sbcied |
|- ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) -> ( [. ( G ` w ) / c ]. ps <-> ph ) ) |
| 26 |
6 25
|
sbcied |
|- ( ( w = W /\ a = ( E ` w ) ) -> ( [. ( F ` w ) / b ]. [. ( G ` w ) / c ]. ps <-> ph ) ) |
| 27 |
5 26
|
sbcied |
|- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. [. ( G ` w ) / c ]. ps <-> ph ) ) |