Metamath Proof Explorer


Theorem sbcied2

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)

Ref Expression
Hypotheses sbcied2.1
|- ( ph -> A e. V )
sbcied2.2
|- ( ph -> A = B )
sbcied2.3
|- ( ( ph /\ x = B ) -> ( ps <-> ch ) )
Assertion sbcied2
|- ( ph -> ( [. A / x ]. ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 sbcied2.1
 |-  ( ph -> A e. V )
2 sbcied2.2
 |-  ( ph -> A = B )
3 sbcied2.3
 |-  ( ( ph /\ x = B ) -> ( ps <-> ch ) )
4 id
 |-  ( x = A -> x = A )
5 4 2 sylan9eqr
 |-  ( ( ph /\ x = A ) -> x = B )
6 5 3 syldan
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
7 1 6 sbcied
 |-  ( ph -> ( [. A / x ]. ps <-> ch ) )