Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcied2.1 | |- ( ph -> A e. V ) |
|
| sbcied2.2 | |- ( ph -> A = B ) |
||
| sbcied2.3 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
||
| Assertion | sbcied2 | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied2.1 | |- ( ph -> A e. V ) |
|
| 2 | sbcied2.2 | |- ( ph -> A = B ) |
|
| 3 | sbcied2.3 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
|
| 4 | id | |- ( x = A -> x = A ) |
|
| 5 | 4 2 | sylan9eqr | |- ( ( ph /\ x = A ) -> x = B ) |
| 6 | 5 3 | syldan | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
| 7 | 1 6 | sbcied | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |