Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbcied2.1 | |- ( ph -> A e. V ) |
|
sbcied2.2 | |- ( ph -> A = B ) |
||
sbcied2.3 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
||
Assertion | sbcied2 | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied2.1 | |- ( ph -> A e. V ) |
|
2 | sbcied2.2 | |- ( ph -> A = B ) |
|
3 | sbcied2.3 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
|
4 | id | |- ( x = A -> x = A ) |
|
5 | 4 2 | sylan9eqr | |- ( ( ph /\ x = A ) -> x = B ) |
6 | 5 3 | syldan | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
7 | 1 6 | sbcied | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |