Metamath Proof Explorer


Theorem sbciedOLD

Description: Obsolete version of sbcied as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbciedOLD.1
|- ( ph -> A e. V )
sbciedOLD.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
Assertion sbciedOLD
|- ( ph -> ( [. A / x ]. ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 sbciedOLD.1
 |-  ( ph -> A e. V )
2 sbciedOLD.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 nfv
 |-  F/ x ph
4 nfvd
 |-  ( ph -> F/ x ch )
5 1 2 3 4 sbciedf
 |-  ( ph -> ( [. A / x ]. ps <-> ch ) )