Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbcied.1 | |- ( ph -> A e. V ) |
|
sbcied.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
sbciedf.3 | |- F/ x ph |
||
sbciedf.4 | |- ( ph -> F/ x ch ) |
||
Assertion | sbciedf | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | |- ( ph -> A e. V ) |
|
2 | sbcied.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
3 | sbciedf.3 | |- F/ x ph |
|
4 | sbciedf.4 | |- ( ph -> F/ x ch ) |
|
5 | 2 | ex | |- ( ph -> ( x = A -> ( ps <-> ch ) ) ) |
6 | 3 5 | alrimi | |- ( ph -> A. x ( x = A -> ( ps <-> ch ) ) ) |
7 | sbciegft | |- ( ( A e. V /\ F/ x ch /\ A. x ( x = A -> ( ps <-> ch ) ) ) -> ( [. A / x ]. ps <-> ch ) ) |
|
8 | 1 4 6 7 | syl3anc | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |