Metamath Proof Explorer


Theorem sbcieg

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis sbcieg.1
|- ( x = A -> ( ph <-> ps ) )
Assertion sbcieg
|- ( A e. V -> ( [. A / x ]. ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 sbcieg.1
 |-  ( x = A -> ( ph <-> ps ) )
2 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
3 1 elabg
 |-  ( A e. V -> ( A e. { x | ph } <-> ps ) )
4 2 3 syl5bb
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )