Metamath Proof Explorer


Theorem sbciegOLD

Description: Obsolete version of sbcieg as of 12-Oct-2024. (Contributed by NM, 10-Nov-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbciegOLD.1
|- ( x = A -> ( ph <-> ps ) )
Assertion sbciegOLD
|- ( A e. V -> ( [. A / x ]. ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 sbciegOLD.1
 |-  ( x = A -> ( ph <-> ps ) )
2 nfv
 |-  F/ x ps
3 2 1 sbciegf
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )