| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc5 |  |-  ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) | 
						
							| 2 |  | biimp |  |-  ( ( ph <-> ps ) -> ( ph -> ps ) ) | 
						
							| 3 | 2 | imim2i |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) | 
						
							| 4 | 3 | impd |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A /\ ph ) -> ps ) ) | 
						
							| 5 | 4 | alimi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ( x = A /\ ph ) -> ps ) ) | 
						
							| 6 |  | 19.23t |  |-  ( F/ x ps -> ( A. x ( ( x = A /\ ph ) -> ps ) <-> ( E. x ( x = A /\ ph ) -> ps ) ) ) | 
						
							| 7 | 6 | biimpa |  |-  ( ( F/ x ps /\ A. x ( ( x = A /\ ph ) -> ps ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) | 
						
							| 8 | 5 7 | sylan2 |  |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) | 
						
							| 9 | 8 | 3adant1 |  |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( E. x ( x = A /\ ph ) -> ps ) ) | 
						
							| 10 | 1 9 | biimtrid |  |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph -> ps ) ) | 
						
							| 11 |  | biimpr |  |-  ( ( ph <-> ps ) -> ( ps -> ph ) ) | 
						
							| 12 | 11 | imim2i |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) | 
						
							| 13 | 12 | com23 |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( ps -> ( x = A -> ph ) ) ) | 
						
							| 14 | 13 | alimi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ps -> ( x = A -> ph ) ) ) | 
						
							| 15 |  | 19.21t |  |-  ( F/ x ps -> ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) ) | 
						
							| 16 | 15 | biimpa |  |-  ( ( F/ x ps /\ A. x ( ps -> ( x = A -> ph ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) | 
						
							| 17 | 14 16 | sylan2 |  |-  ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) | 
						
							| 18 | 17 | 3adant1 |  |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) | 
						
							| 19 |  | sbc6g |  |-  ( A e. V -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) | 
						
							| 21 | 18 20 | sylibrd |  |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> [. A / x ]. ph ) ) | 
						
							| 22 | 10 21 | impbid |  |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) ) |