Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / x ]. ( ph -> ps ) -> A e. _V ) |
2 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ( ph -> ps ) <-> [. A / x ]. ( ph -> ps ) ) ) |
3 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
4 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
5 |
3 4
|
imbi12d |
|- ( y = A -> ( ( [ y / x ] ph -> [ y / x ] ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) |
6 |
2 5
|
imbi12d |
|- ( y = A -> ( ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) <-> ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) ) |
7 |
|
sbi1 |
|- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
8 |
6 7
|
vtoclg |
|- ( A e. _V -> ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) |
9 |
1 8
|
mpcom |
|- ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) |