Metamath Proof Explorer


Theorem sbcim1OLD

Description: Obsolete version of sbcim1 as of 26-Oct-2024. (Contributed by NM, 17-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcim1OLD
|- ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / x ]. ( ph -> ps ) -> A e. _V )
2 sbcimg
 |-  ( A e. _V -> ( [. A / x ]. ( ph -> ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) ) )
3 2 biimpd
 |-  ( A e. _V -> ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) )
4 1 3 mpcom
 |-  ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) )