Step |
Hyp |
Ref |
Expression |
1 |
|
sbcimdv.1 |
|- ( ph -> ( ps -> ch ) ) |
2 |
|
df-sbc |
|- ( [. A / x ]. ps <-> A e. { x | ps } ) |
3 |
|
dfclel |
|- ( A e. { x | ps } <-> E. y ( y = A /\ y e. { x | ps } ) ) |
4 |
|
df-clab |
|- ( y e. { x | ps } <-> [ y / x ] ps ) |
5 |
4
|
anbi2i |
|- ( ( y = A /\ y e. { x | ps } ) <-> ( y = A /\ [ y / x ] ps ) ) |
6 |
5
|
exbii |
|- ( E. y ( y = A /\ y e. { x | ps } ) <-> E. y ( y = A /\ [ y / x ] ps ) ) |
7 |
2 3 6
|
3bitri |
|- ( [. A / x ]. ps <-> E. y ( y = A /\ [ y / x ] ps ) ) |
8 |
7
|
biimpi |
|- ( [. A / x ]. ps -> E. y ( y = A /\ [ y / x ] ps ) ) |
9 |
1
|
sbimdv |
|- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) |
10 |
9
|
anim2d |
|- ( ph -> ( ( y = A /\ [ y / x ] ps ) -> ( y = A /\ [ y / x ] ch ) ) ) |
11 |
10
|
eximdv |
|- ( ph -> ( E. y ( y = A /\ [ y / x ] ps ) -> E. y ( y = A /\ [ y / x ] ch ) ) ) |
12 |
|
df-sbc |
|- ( [. A / x ]. ch <-> A e. { x | ch } ) |
13 |
|
dfclel |
|- ( A e. { x | ch } <-> E. y ( y = A /\ y e. { x | ch } ) ) |
14 |
|
df-clab |
|- ( y e. { x | ch } <-> [ y / x ] ch ) |
15 |
14
|
anbi2i |
|- ( ( y = A /\ y e. { x | ch } ) <-> ( y = A /\ [ y / x ] ch ) ) |
16 |
15
|
exbii |
|- ( E. y ( y = A /\ y e. { x | ch } ) <-> E. y ( y = A /\ [ y / x ] ch ) ) |
17 |
12 13 16
|
3bitrri |
|- ( E. y ( y = A /\ [ y / x ] ch ) <-> [. A / x ]. ch ) |
18 |
17
|
biimpi |
|- ( E. y ( y = A /\ [ y / x ] ch ) -> [. A / x ]. ch ) |
19 |
8 11 18
|
syl56 |
|- ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) |