Metamath Proof Explorer


Theorem sbcimdvOLD

Description: Obsolete version of sbcimdv as of 12-Oct-2024. (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbcimdvOLD.1
|- ( ph -> ( ps -> ch ) )
Assertion sbcimdvOLD
|- ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) )

Proof

Step Hyp Ref Expression
1 sbcimdvOLD.1
 |-  ( ph -> ( ps -> ch ) )
2 sbcex
 |-  ( [. A / x ]. ps -> A e. _V )
3 1 alrimiv
 |-  ( ph -> A. x ( ps -> ch ) )
4 spsbc
 |-  ( A e. _V -> ( A. x ( ps -> ch ) -> [. A / x ]. ( ps -> ch ) ) )
5 sbcim1
 |-  ( [. A / x ]. ( ps -> ch ) -> ( [. A / x ]. ps -> [. A / x ]. ch ) )
6 3 4 5 syl56
 |-  ( A e. _V -> ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) )
7 6 com3l
 |-  ( ph -> ( [. A / x ]. ps -> ( A e. _V -> [. A / x ]. ch ) ) )
8 2 7 mpdi
 |-  ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) )