Step |
Hyp |
Ref |
Expression |
1 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ( ph -> ps ) <-> [. A / x ]. ( ph -> ps ) ) ) |
2 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
3 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
4 |
2 3
|
imbi12d |
|- ( y = A -> ( ( [ y / x ] ph -> [ y / x ] ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) |
5 |
|
sbim |
|- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
6 |
1 4 5
|
vtoclbg |
|- ( A e. V -> ( [. A / x ]. ( ph -> ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) |