Metamath Proof Explorer


Theorem sbcn1

Description: Move negation in and out of class substitution. One direction of sbcng that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcn1
|- ( [. A / x ]. -. ph -> -. [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / x ]. -. ph -> A e. _V )
2 sbcng
 |-  ( A e. _V -> ( [. A / x ]. -. ph <-> -. [. A / x ]. ph ) )
3 2 biimpd
 |-  ( A e. _V -> ( [. A / x ]. -. ph -> -. [. A / x ]. ph ) )
4 1 3 mpcom
 |-  ( [. A / x ]. -. ph -> -. [. A / x ]. ph )