Step |
Hyp |
Ref |
Expression |
1 |
|
nne |
|- ( -. B =/= C <-> B = C ) |
2 |
1
|
sbcbii |
|- ( [. A / x ]. -. B =/= C <-> [. A / x ]. B = C ) |
3 |
2
|
a1i |
|- ( A e. _V -> ( [. A / x ]. -. B =/= C <-> [. A / x ]. B = C ) ) |
4 |
|
sbcng |
|- ( A e. _V -> ( [. A / x ]. -. B =/= C <-> -. [. A / x ]. B =/= C ) ) |
5 |
|
sbceqg |
|- ( A e. _V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
6 |
|
nne |
|- ( -. [_ A / x ]_ B =/= [_ A / x ]_ C <-> [_ A / x ]_ B = [_ A / x ]_ C ) |
7 |
5 6
|
bitr4di |
|- ( A e. _V -> ( [. A / x ]. B = C <-> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
8 |
3 4 7
|
3bitr3d |
|- ( A e. _V -> ( -. [. A / x ]. B =/= C <-> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
9 |
8
|
con4bid |
|- ( A e. _V -> ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
10 |
|
sbcex |
|- ( [. A / x ]. B =/= C -> A e. _V ) |
11 |
10
|
con3i |
|- ( -. A e. _V -> -. [. A / x ]. B =/= C ) |
12 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
13 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
14 |
12 13
|
eqtr4d |
|- ( -. A e. _V -> [_ A / x ]_ B = [_ A / x ]_ C ) |
15 |
14 6
|
sylibr |
|- ( -. A e. _V -> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) |
16 |
11 15
|
2falsed |
|- ( -. A e. _V -> ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
17 |
9 16
|
pm2.61i |
|- ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) |