| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nne |
|- ( -. B =/= C <-> B = C ) |
| 2 |
1
|
sbcbii |
|- ( [. A / x ]. -. B =/= C <-> [. A / x ]. B = C ) |
| 3 |
2
|
a1i |
|- ( A e. _V -> ( [. A / x ]. -. B =/= C <-> [. A / x ]. B = C ) ) |
| 4 |
|
sbcng |
|- ( A e. _V -> ( [. A / x ]. -. B =/= C <-> -. [. A / x ]. B =/= C ) ) |
| 5 |
|
sbceqg |
|- ( A e. _V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
| 6 |
|
nne |
|- ( -. [_ A / x ]_ B =/= [_ A / x ]_ C <-> [_ A / x ]_ B = [_ A / x ]_ C ) |
| 7 |
5 6
|
bitr4di |
|- ( A e. _V -> ( [. A / x ]. B = C <-> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 8 |
3 4 7
|
3bitr3d |
|- ( A e. _V -> ( -. [. A / x ]. B =/= C <-> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 9 |
8
|
con4bid |
|- ( A e. _V -> ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 10 |
|
sbcex |
|- ( [. A / x ]. B =/= C -> A e. _V ) |
| 11 |
10
|
con3i |
|- ( -. A e. _V -> -. [. A / x ]. B =/= C ) |
| 12 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
| 13 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
| 14 |
12 13
|
eqtr4d |
|- ( -. A e. _V -> [_ A / x ]_ B = [_ A / x ]_ C ) |
| 15 |
14 6
|
sylibr |
|- ( -. A e. _V -> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) |
| 16 |
11 15
|
2falsed |
|- ( -. A e. _V -> ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 17 |
9 16
|
pm2.61i |
|- ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) |