Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbcnestgw when possible. (Contributed by NM, 27-Nov-2005) (Proof shortened by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcnestg | |- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |- F/ x ph |
|
2 | 1 | ax-gen | |- A. y F/ x ph |
3 | sbcnestgf | |- ( ( A e. V /\ A. y F/ x ph ) -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
|
4 | 2 3 | mpan2 | |- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |