Step |
Hyp |
Ref |
Expression |
1 |
|
dfsbcq |
|- ( z = A -> ( [. z / x ]. [. B / y ]. ph <-> [. A / x ]. [. B / y ]. ph ) ) |
2 |
|
csbeq1 |
|- ( z = A -> [_ z / x ]_ B = [_ A / x ]_ B ) |
3 |
2
|
sbceq1d |
|- ( z = A -> ( [. [_ z / x ]_ B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
4 |
1 3
|
bibi12d |
|- ( z = A -> ( ( [. z / x ]. [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) <-> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) ) |
5 |
4
|
imbi2d |
|- ( z = A -> ( ( A. y F/ x ph -> ( [. z / x ]. [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) <-> ( A. y F/ x ph -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) ) ) |
6 |
|
vex |
|- z e. _V |
7 |
6
|
a1i |
|- ( A. y F/ x ph -> z e. _V ) |
8 |
|
csbeq1a |
|- ( x = z -> B = [_ z / x ]_ B ) |
9 |
8
|
sbceq1d |
|- ( x = z -> ( [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) |
10 |
9
|
adantl |
|- ( ( A. y F/ x ph /\ x = z ) -> ( [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) |
11 |
|
nfnf1 |
|- F/ x F/ x ph |
12 |
11
|
nfal |
|- F/ x A. y F/ x ph |
13 |
|
nfa1 |
|- F/ y A. y F/ x ph |
14 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ B |
15 |
14
|
a1i |
|- ( A. y F/ x ph -> F/_ x [_ z / x ]_ B ) |
16 |
|
sp |
|- ( A. y F/ x ph -> F/ x ph ) |
17 |
13 15 16
|
nfsbcd |
|- ( A. y F/ x ph -> F/ x [. [_ z / x ]_ B / y ]. ph ) |
18 |
7 10 12 17
|
sbciedf |
|- ( A. y F/ x ph -> ( [. z / x ]. [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) |
19 |
5 18
|
vtoclg |
|- ( A e. V -> ( A. y F/ x ph -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) ) |
20 |
19
|
imp |
|- ( ( A e. V /\ A. y F/ x ph ) -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |