Metamath Proof Explorer


Theorem sbcnestgw

Description: Nest the composition of two substitutions. Version of sbcnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion sbcnestgw
|- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ x ph
2 1 ax-gen
 |-  A. y F/ x ph
3 sbcnestgfw
 |-  ( ( A e. V /\ A. y F/ x ph ) -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) )
4 2 3 mpan2
 |-  ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) )