Metamath Proof Explorer


Theorem sbcng

Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004)

Ref Expression
Assertion sbcng
|- ( A e. V -> ( [. A / x ]. -. ph <-> -. [. A / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 dfsbcq2
 |-  ( y = A -> ( [ y / x ] -. ph <-> [. A / x ]. -. ph ) )
2 dfsbcq2
 |-  ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) )
3 2 notbid
 |-  ( y = A -> ( -. [ y / x ] ph <-> -. [. A / x ]. ph ) )
4 sbn
 |-  ( [ y / x ] -. ph <-> -. [ y / x ] ph )
5 1 3 4 vtoclbg
 |-  ( A e. V -> ( [. A / x ]. -. ph <-> -. [. A / x ]. ph ) )