Step |
Hyp |
Ref |
Expression |
1 |
|
sbco2d.1 |
|- F/ x ph |
2 |
|
sbco2d.2 |
|- F/ z ph |
3 |
|
sbco2d.3 |
|- ( ph -> F/ z ps ) |
4 |
2 3
|
nfim1 |
|- F/ z ( ph -> ps ) |
5 |
4
|
sbco2 |
|- ( [ y / z ] [ z / x ] ( ph -> ps ) <-> [ y / x ] ( ph -> ps ) ) |
6 |
1
|
sbrim |
|- ( [ z / x ] ( ph -> ps ) <-> ( ph -> [ z / x ] ps ) ) |
7 |
6
|
sbbii |
|- ( [ y / z ] [ z / x ] ( ph -> ps ) <-> [ y / z ] ( ph -> [ z / x ] ps ) ) |
8 |
2
|
sbrim |
|- ( [ y / z ] ( ph -> [ z / x ] ps ) <-> ( ph -> [ y / z ] [ z / x ] ps ) ) |
9 |
7 8
|
bitri |
|- ( [ y / z ] [ z / x ] ( ph -> ps ) <-> ( ph -> [ y / z ] [ z / x ] ps ) ) |
10 |
1
|
sbrim |
|- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |
11 |
5 9 10
|
3bitr3i |
|- ( ( ph -> [ y / z ] [ z / x ] ps ) <-> ( ph -> [ y / x ] ps ) ) |
12 |
11
|
pm5.74ri |
|- ( ph -> ( [ y / z ] [ z / x ] ps <-> [ y / x ] ps ) ) |