Metamath Proof Explorer


Theorem sbco2v

Description: A composition law for substitution. Version of sbco2 with disjoint variable conditions, not requiring ax-13 , but ax-11 . (Contributed by NM, 30-Jun-1994) (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Hypothesis sbco2v.1
|- F/ z ph
Assertion sbco2v
|- ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sbco2v.1
 |-  F/ z ph
2 1 nfsbv
 |-  F/ z [ y / x ] ph
3 sbequ
 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )
4 2 3 sbiev
 |-  ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph )