Step |
Hyp |
Ref |
Expression |
1 |
|
drsb1 |
|- ( A. x x = y -> ( [ z / x ] [ y / x ] ph <-> [ z / y ] [ y / x ] ph ) ) |
2 |
|
nfae |
|- F/ x A. x x = y |
3 |
|
sbequ12a |
|- ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |
4 |
3
|
sps |
|- ( A. x x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |
5 |
2 4
|
sbbid |
|- ( A. x x = y -> ( [ z / x ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) |
6 |
1 5
|
bitr3d |
|- ( A. x x = y -> ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) |
7 |
|
nfnae |
|- F/ y -. A. x x = y |
8 |
|
nfnae |
|- F/ x -. A. x x = y |
9 |
|
nfsb2 |
|- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
10 |
7 8 9
|
sbco2d |
|- ( -. A. x x = y -> ( [ z / x ] [ x / y ] [ y / x ] ph <-> [ z / y ] [ y / x ] ph ) ) |
11 |
|
sbco |
|- ( [ x / y ] [ y / x ] ph <-> [ x / y ] ph ) |
12 |
11
|
sbbii |
|- ( [ z / x ] [ x / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) |
13 |
10 12
|
bitr3di |
|- ( -. A. x x = y -> ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) |
14 |
6 13
|
pm2.61i |
|- ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) |