Metamath Proof Explorer


Theorem sbco4

Description: Two ways of exchanging two variables. Both sides of the biconditional exchange x and y , either via two temporary variables u and v , or a single temporary w . (Contributed by Jim Kingdon, 25-Sep-2018)

Ref Expression
Assertion sbco4
|- ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )

Proof

Step Hyp Ref Expression
1 sbcom2
 |-  ( [ x / v ] [ y / u ] [ u / x ] [ v / y ] ph <-> [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph )
2 sbco2vv
 |-  ( [ y / u ] [ u / x ] [ v / y ] ph <-> [ y / x ] [ v / y ] ph )
3 2 sbbii
 |-  ( [ x / v ] [ y / u ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph )
4 1 3 bitr3i
 |-  ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph )
5 sbco4lem
 |-  ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / t ] [ y / x ] [ t / y ] ph )
6 sbco4lem
 |-  ( [ x / t ] [ y / x ] [ t / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )
7 4 5 6 3bitri
 |-  ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )