| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbequ |
|- ( u = y -> ( [ u / x ] [ v / y ] ph <-> [ y / x ] [ v / y ] ph ) ) |
| 2 |
1
|
sbbidv |
|- ( u = y -> ( [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) ) |
| 3 |
2
|
sbievw |
|- ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) |
| 4 |
|
sbco4lem |
|- ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / t ] [ y / x ] [ t / y ] ph ) |
| 5 |
|
sbco4lem |
|- ( [ x / t ] [ y / x ] [ t / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |
| 6 |
4 5
|
bitri |
|- ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |
| 7 |
3 6
|
bitri |
|- ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |