Metamath Proof Explorer


Theorem sbco4

Description: Two ways of exchanging two variables. Both sides of the biconditional exchange x and y , either via two temporary variables u and v , or a single temporary w . (Contributed by Jim Kingdon, 25-Sep-2018) Avoid ax-11 . (Revised by SN, 3-Sep-2025)

Ref Expression
Assertion sbco4
|- ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )

Proof

Step Hyp Ref Expression
1 sbequ
 |-  ( u = y -> ( [ u / x ] [ v / y ] ph <-> [ y / x ] [ v / y ] ph ) )
2 1 sbbidv
 |-  ( u = y -> ( [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) )
3 2 sbievw
 |-  ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph )
4 sbco4lem
 |-  ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / t ] [ y / x ] [ t / y ] ph )
5 sbco4lem
 |-  ( [ x / t ] [ y / x ] [ t / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )
6 4 5 bitri
 |-  ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )
7 3 6 bitri
 |-  ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )