| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcom2 |  |-  ( [ x / v ] [ y / u ] [ u / x ] [ v / y ] ph <-> [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph ) | 
						
							| 2 |  | sbco2vv |  |-  ( [ y / u ] [ u / x ] [ v / y ] ph <-> [ y / x ] [ v / y ] ph ) | 
						
							| 3 | 2 | sbbii |  |-  ( [ x / v ] [ y / u ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) | 
						
							| 4 | 1 3 | bitr3i |  |-  ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) | 
						
							| 5 |  | sbco4lem |  |-  ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / t ] [ y / x ] [ t / y ] ph ) | 
						
							| 6 |  | sbco4lem |  |-  ( [ x / t ] [ y / x ] [ t / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) | 
						
							| 7 | 4 5 6 | 3bitri |  |-  ( [ y / u ] [ x / v ] [ u / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |