Metamath Proof Explorer


Theorem sbco4lem

Description: Lemma for sbco4 . It replaces the temporary variable v with another temporary variable w . (Contributed by Jim Kingdon, 26-Sep-2018) (Proof shortened by Wolf Lammen, 12-Oct-2024) Avoid ax-11 . (Revised by SN, 3-Sep-2025)

Ref Expression
Assertion sbco4lem
|- ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )

Proof

Step Hyp Ref Expression
1 sbequ
 |-  ( v = w -> ( [ v / y ] ph <-> [ w / y ] ph ) )
2 1 sbbidv
 |-  ( v = w -> ( [ y / x ] [ v / y ] ph <-> [ y / x ] [ w / y ] ph ) )
3 2 cbvsbv
 |-  ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph )