Step |
Hyp |
Ref |
Expression |
1 |
|
sbcom2 |
|- ( [ w / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ y / x ] [ w / v ] [ v / w ] [ w / y ] ph ) |
2 |
1
|
sbbii |
|- ( [ x / w ] [ w / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / w ] [ y / x ] [ w / v ] [ v / w ] [ w / y ] ph ) |
3 |
|
sbco2vv |
|- ( [ v / w ] [ w / y ] ph <-> [ v / y ] ph ) |
4 |
3
|
sbbii |
|- ( [ y / x ] [ v / w ] [ w / y ] ph <-> [ y / x ] [ v / y ] ph ) |
5 |
4
|
2sbbii |
|- ( [ x / w ] [ w / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / w ] [ w / v ] [ y / x ] [ v / y ] ph ) |
6 |
|
sbco2vv |
|- ( [ x / w ] [ w / v ] [ y / x ] [ v / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) |
7 |
5 6
|
bitri |
|- ( [ x / w ] [ w / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) |
8 |
|
sbid2vw |
|- ( [ w / v ] [ v / w ] [ w / y ] ph <-> [ w / y ] ph ) |
9 |
8
|
2sbbii |
|- ( [ x / w ] [ y / x ] [ w / v ] [ v / w ] [ w / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |
10 |
2 7 9
|
3bitr3i |
|- ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |