Description: A commutativity law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out sbcom3vv for a version requiring fewer axioms. (Contributed by NM, 27-May-1997) (Proof shortened by Wolf Lammen, 20-Sep-2018) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcom | |- ( [ y / z ] [ y / x ] ph <-> [ y / x ] [ y / z ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco3 | |- ( [ y / z ] [ z / x ] ph <-> [ y / x ] [ x / z ] ph ) |
|
2 | sbcom3 | |- ( [ y / z ] [ z / x ] ph <-> [ y / z ] [ y / x ] ph ) |
|
3 | sbcom3 | |- ( [ y / x ] [ x / z ] ph <-> [ y / x ] [ y / z ] ph ) |
|
4 | 1 2 3 | 3bitr3i | |- ( [ y / z ] [ y / x ] ph <-> [ y / x ] [ y / z ] ph ) |