| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sb6 |
|- ( [ v / z ] [ u / x ] ph <-> A. z A. x ( ( z = v /\ x = u ) -> ph ) ) |
| 2 |
|
alcom |
|- ( A. z A. x ( ( z = v /\ x = u ) -> ph ) <-> A. x A. z ( ( z = v /\ x = u ) -> ph ) ) |
| 3 |
|
ancomst |
|- ( ( ( z = v /\ x = u ) -> ph ) <-> ( ( x = u /\ z = v ) -> ph ) ) |
| 4 |
3
|
2albii |
|- ( A. x A. z ( ( z = v /\ x = u ) -> ph ) <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
| 5 |
1 2 4
|
3bitri |
|- ( [ v / z ] [ u / x ] ph <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
| 6 |
|
2sb6 |
|- ( [ u / x ] [ v / z ] ph <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
| 7 |
5 6
|
bitr4i |
|- ( [ v / z ] [ u / x ] ph <-> [ u / x ] [ v / z ] ph ) |
| 8 |
|
sbequ |
|- ( u = y -> ( [ u / x ] ph <-> [ y / x ] ph ) ) |
| 9 |
8
|
sbbidv |
|- ( u = y -> ( [ v / z ] [ u / x ] ph <-> [ v / z ] [ y / x ] ph ) ) |
| 10 |
7 9
|
bitr3id |
|- ( u = y -> ( [ u / x ] [ v / z ] ph <-> [ v / z ] [ y / x ] ph ) ) |
| 11 |
|
sbequ |
|- ( v = w -> ( [ v / z ] [ y / x ] ph <-> [ w / z ] [ y / x ] ph ) ) |
| 12 |
10 11
|
sylan9bb |
|- ( ( u = y /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ w / z ] [ y / x ] ph ) ) |
| 13 |
|
sbequ |
|- ( v = w -> ( [ v / z ] ph <-> [ w / z ] ph ) ) |
| 14 |
13
|
sbbidv |
|- ( v = w -> ( [ u / x ] [ v / z ] ph <-> [ u / x ] [ w / z ] ph ) ) |
| 15 |
|
sbequ |
|- ( u = y -> ( [ u / x ] [ w / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 16 |
14 15
|
sylan9bbr |
|- ( ( u = y /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 17 |
12 16
|
bitr3d |
|- ( ( u = y /\ v = w ) -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 18 |
17
|
ex |
|- ( u = y -> ( v = w -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) ) |
| 19 |
|
ax6ev |
|- E. u u = y |
| 20 |
18 19
|
exlimiiv |
|- ( v = w -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 21 |
|
ax6ev |
|- E. v v = w |
| 22 |
20 21
|
exlimiiv |
|- ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) |