Step |
Hyp |
Ref |
Expression |
1 |
|
sbcop.z |
|- ( z = <. x , y >. -> ( ph <-> ps ) ) |
2 |
|
sbc5 |
|- ( [. a / x ]. ps <-> E. x ( x = a /\ ps ) ) |
3 |
|
opeq1 |
|- ( a = x -> <. a , y >. = <. x , y >. ) |
4 |
3
|
equcoms |
|- ( x = a -> <. a , y >. = <. x , y >. ) |
5 |
4
|
eqeq2d |
|- ( x = a -> ( z = <. a , y >. <-> z = <. x , y >. ) ) |
6 |
1
|
biimprd |
|- ( z = <. x , y >. -> ( ps -> ph ) ) |
7 |
5 6
|
syl6bi |
|- ( x = a -> ( z = <. a , y >. -> ( ps -> ph ) ) ) |
8 |
7
|
com23 |
|- ( x = a -> ( ps -> ( z = <. a , y >. -> ph ) ) ) |
9 |
8
|
imp |
|- ( ( x = a /\ ps ) -> ( z = <. a , y >. -> ph ) ) |
10 |
9
|
exlimiv |
|- ( E. x ( x = a /\ ps ) -> ( z = <. a , y >. -> ph ) ) |
11 |
2 10
|
sylbi |
|- ( [. a / x ]. ps -> ( z = <. a , y >. -> ph ) ) |
12 |
11
|
alrimiv |
|- ( [. a / x ]. ps -> A. z ( z = <. a , y >. -> ph ) ) |
13 |
|
opex |
|- <. a , y >. e. _V |
14 |
13
|
sbc6 |
|- ( [. <. a , y >. / z ]. ph <-> A. z ( z = <. a , y >. -> ph ) ) |
15 |
12 14
|
sylibr |
|- ( [. a / x ]. ps -> [. <. a , y >. / z ]. ph ) |
16 |
|
sbc5 |
|- ( [. <. a , y >. / z ]. ph <-> E. z ( z = <. a , y >. /\ ph ) ) |
17 |
1
|
biimpd |
|- ( z = <. x , y >. -> ( ph -> ps ) ) |
18 |
5 17
|
syl6bi |
|- ( x = a -> ( z = <. a , y >. -> ( ph -> ps ) ) ) |
19 |
18
|
com3l |
|- ( z = <. a , y >. -> ( ph -> ( x = a -> ps ) ) ) |
20 |
19
|
imp |
|- ( ( z = <. a , y >. /\ ph ) -> ( x = a -> ps ) ) |
21 |
20
|
alrimiv |
|- ( ( z = <. a , y >. /\ ph ) -> A. x ( x = a -> ps ) ) |
22 |
|
vex |
|- a e. _V |
23 |
22
|
sbc6 |
|- ( [. a / x ]. ps <-> A. x ( x = a -> ps ) ) |
24 |
21 23
|
sylibr |
|- ( ( z = <. a , y >. /\ ph ) -> [. a / x ]. ps ) |
25 |
24
|
exlimiv |
|- ( E. z ( z = <. a , y >. /\ ph ) -> [. a / x ]. ps ) |
26 |
16 25
|
sylbi |
|- ( [. <. a , y >. / z ]. ph -> [. a / x ]. ps ) |
27 |
15 26
|
impbii |
|- ( [. a / x ]. ps <-> [. <. a , y >. / z ]. ph ) |