Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
|- ( [. A / x ]. ( ph \/ ps ) -> A e. _V ) |
2 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
3 |
|
sbcex |
|- ( [. A / x ]. ps -> A e. _V ) |
4 |
2 3
|
jaoi |
|- ( ( [. A / x ]. ph \/ [. A / x ]. ps ) -> A e. _V ) |
5 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ( ph \/ ps ) <-> [. A / x ]. ( ph \/ ps ) ) ) |
6 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
7 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
8 |
6 7
|
orbi12d |
|- ( y = A -> ( ( [ y / x ] ph \/ [ y / x ] ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
9 |
|
sbor |
|- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |
10 |
5 8 9
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
11 |
1 4 10
|
pm5.21nii |
|- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |