Metamath Proof Explorer


Theorem sbcov

Description: A composition law for substitution. Version of sbco with a disjoint variable condition using fewer axioms. (Contributed by NM, 14-May-1993) (Revised by Gino Giotto, 7-Aug-2023)

Ref Expression
Assertion sbcov
|- ( [ y / x ] [ x / y ] ph <-> [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sbcom3vv
 |-  ( [ y / x ] [ x / y ] ph <-> [ y / x ] [ y / y ] ph )
2 sbid
 |-  ( [ y / y ] ph <-> ph )
3 2 sbbii
 |-  ( [ y / x ] [ y / y ] ph <-> [ y / x ] ph )
4 1 3 bitri
 |-  ( [ y / x ] [ x / y ] ph <-> [ y / x ] ph )