Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcralg | |- ( A e. V -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | |- F/_ y A |
|
2 | sbcralt | |- ( ( A e. V /\ F/_ y A ) -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) |
|
3 | 1 2 | mpan2 | |- ( A e. V -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) |