Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcralg | |- ( A e. V -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv | |- F/_ y A | |
| 2 | sbcralt | |- ( ( A e. V /\ F/_ y A ) -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) | |
| 3 | 1 2 | mpan2 | |- ( A e. V -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) |