| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcssg |
|- ( A e. V -> ( [. A / x ]. R C_ ( _V X. _V ) <-> [_ A / x ]_ R C_ [_ A / x ]_ ( _V X. _V ) ) ) |
| 2 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ ( _V X. _V ) = ( _V X. _V ) ) |
| 3 |
2
|
sseq2d |
|- ( A e. V -> ( [_ A / x ]_ R C_ [_ A / x ]_ ( _V X. _V ) <-> [_ A / x ]_ R C_ ( _V X. _V ) ) ) |
| 4 |
1 3
|
bitrd |
|- ( A e. V -> ( [. A / x ]. R C_ ( _V X. _V ) <-> [_ A / x ]_ R C_ ( _V X. _V ) ) ) |
| 5 |
|
df-rel |
|- ( Rel R <-> R C_ ( _V X. _V ) ) |
| 6 |
5
|
sbcbii |
|- ( [. A / x ]. Rel R <-> [. A / x ]. R C_ ( _V X. _V ) ) |
| 7 |
|
df-rel |
|- ( Rel [_ A / x ]_ R <-> [_ A / x ]_ R C_ ( _V X. _V ) ) |
| 8 |
4 6 7
|
3bitr4g |
|- ( A e. V -> ( [. A / x ]. Rel R <-> Rel [_ A / x ]_ R ) ) |