| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcex |  |-  ( [. A / x ]. E! y e. B ph -> A e. _V ) | 
						
							| 2 |  | reurex |  |-  ( E! y e. B [. A / x ]. ph -> E. y e. B [. A / x ]. ph ) | 
						
							| 3 |  | sbcex |  |-  ( [. A / x ]. ph -> A e. _V ) | 
						
							| 4 | 3 | rexlimivw |  |-  ( E. y e. B [. A / x ]. ph -> A e. _V ) | 
						
							| 5 | 2 4 | syl |  |-  ( E! y e. B [. A / x ]. ph -> A e. _V ) | 
						
							| 6 |  | dfsbcq2 |  |-  ( z = A -> ( [ z / x ] E! y e. B ph <-> [. A / x ]. E! y e. B ph ) ) | 
						
							| 7 |  | dfsbcq2 |  |-  ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) | 
						
							| 8 | 7 | reubidv |  |-  ( z = A -> ( E! y e. B [ z / x ] ph <-> E! y e. B [. A / x ]. ph ) ) | 
						
							| 9 |  | nfcv |  |-  F/_ x B | 
						
							| 10 |  | nfs1v |  |-  F/ x [ z / x ] ph | 
						
							| 11 | 9 10 | nfreuw |  |-  F/ x E! y e. B [ z / x ] ph | 
						
							| 12 |  | sbequ12 |  |-  ( x = z -> ( ph <-> [ z / x ] ph ) ) | 
						
							| 13 | 12 | reubidv |  |-  ( x = z -> ( E! y e. B ph <-> E! y e. B [ z / x ] ph ) ) | 
						
							| 14 | 11 13 | sbiev |  |-  ( [ z / x ] E! y e. B ph <-> E! y e. B [ z / x ] ph ) | 
						
							| 15 | 6 8 14 | vtoclbg |  |-  ( A e. _V -> ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) ) | 
						
							| 16 | 1 5 15 | pm5.21nii |  |-  ( [. A / x ]. E! y e. B ph <-> E! y e. B [. A / x ]. ph ) |