Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcth.1 | |- ph |
|
| Assertion | sbcth | |- ( A e. V -> [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 | |- ph |
|
| 2 | 1 | ax-gen | |- A. x ph |
| 3 | spsbc | |- ( A e. V -> ( A. x ph -> [. A / x ]. ph ) ) |
|
| 4 | 2 3 | mpi | |- ( A e. V -> [. A / x ]. ph ) |