Metamath Proof Explorer


Theorem sbcth

Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005)

Ref Expression
Hypothesis sbcth.1
|- ph
Assertion sbcth
|- ( A e. V -> [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 sbcth.1
 |-  ph
2 1 ax-gen
 |-  A. x ph
3 spsbc
 |-  ( A e. V -> ( A. x ph -> [. A / x ]. ph ) )
4 2 3 mpi
 |-  ( A e. V -> [. A / x ]. ph )