Metamath Proof Explorer


Theorem sbcth2

Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis sbcth2.1
|- ( x e. B -> ph )
Assertion sbcth2
|- ( A e. B -> [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 sbcth2.1
 |-  ( x e. B -> ph )
2 1 rgen
 |-  A. x e. B ph
3 rspsbc
 |-  ( A e. B -> ( A. x e. B ph -> [. A / x ]. ph ) )
4 2 3 mpi
 |-  ( A e. B -> [. A / x ]. ph )