Metamath Proof Explorer


Theorem sbcthdv

Description: Deduction version of sbcth . (Contributed by NM, 30-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypothesis sbcthdv.1
|- ( ph -> ps )
Assertion sbcthdv
|- ( ( ph /\ A e. V ) -> [. A / x ]. ps )

Proof

Step Hyp Ref Expression
1 sbcthdv.1
 |-  ( ph -> ps )
2 1 alrimiv
 |-  ( ph -> A. x ps )
3 spsbc
 |-  ( A e. V -> ( A. x ps -> [. A / x ]. ps ) )
4 2 3 mpan9
 |-  ( ( ph /\ A e. V ) -> [. A / x ]. ps )