Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|- F/ y ph |
2 |
|
nfv |
|- F/ x ph |
3 |
1 2
|
2sb5rf |
|- ( ph <-> E. y E. x ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) ) |
4 |
|
ancom |
|- ( ( y = w /\ x = z ) <-> ( x = z /\ y = w ) ) |
5 |
4
|
anbi1i |
|- ( ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) <-> ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
6 |
5
|
2exbii |
|- ( E. y E. x ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) <-> E. y E. x ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
7 |
|
excom |
|- ( E. y E. x ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |
8 |
3 6 7
|
3bitri |
|- ( ph <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |