Step |
Hyp |
Ref |
Expression |
1 |
|
bibi1 |
|- ( ( ph <-> x = A ) -> ( ( ph <-> x = B ) <-> ( x = A <-> x = B ) ) ) |
2 |
1
|
biimpa |
|- ( ( ( ph <-> x = A ) /\ ( ph <-> x = B ) ) -> ( x = A <-> x = B ) ) |
3 |
2
|
biimpd |
|- ( ( ( ph <-> x = A ) /\ ( ph <-> x = B ) ) -> ( x = A -> x = B ) ) |
4 |
3
|
alanimi |
|- ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A. x ( x = A -> x = B ) ) |
5 |
|
sbceqal |
|- ( A e. V -> ( A. x ( x = A -> x = B ) -> A = B ) ) |
6 |
4 5
|
syl5 |
|- ( A e. V -> ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A = B ) ) |