| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bibi1 |  |-  ( ( ph <-> x = A ) -> ( ( ph <-> x = B ) <-> ( x = A <-> x = B ) ) ) | 
						
							| 2 | 1 | biimpa |  |-  ( ( ( ph <-> x = A ) /\ ( ph <-> x = B ) ) -> ( x = A <-> x = B ) ) | 
						
							| 3 | 2 | biimpd |  |-  ( ( ( ph <-> x = A ) /\ ( ph <-> x = B ) ) -> ( x = A -> x = B ) ) | 
						
							| 4 | 3 | alanimi |  |-  ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A. x ( x = A -> x = B ) ) | 
						
							| 5 |  | sbceqal |  |-  ( A e. V -> ( A. x ( x = A -> x = B ) -> A = B ) ) | 
						
							| 6 | 4 5 | syl5 |  |-  ( A e. V -> ( ( A. x ( ph <-> x = A ) /\ A. x ( ph <-> x = B ) ) -> A = B ) ) |