Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbequ1 | |- ( x = t -> ( ph -> [ t / x ] ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equeucl | |- ( x = t -> ( y = t -> x = y ) ) |
|
| 2 | ax12v | |- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
|
| 3 | 1 2 | syl6 | |- ( x = t -> ( y = t -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
| 4 | 3 | com23 | |- ( x = t -> ( ph -> ( y = t -> A. x ( x = y -> ph ) ) ) ) |
| 5 | 4 | alrimdv | |- ( x = t -> ( ph -> A. y ( y = t -> A. x ( x = y -> ph ) ) ) ) |
| 6 | df-sb | |- ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) ) |
|
| 7 | 5 6 | imbitrrdi | |- ( x = t -> ( ph -> [ t / x ] ph ) ) |