Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 | |- ( x = y -> ( ph -> [ y / x ] ph ) ) |
|
2 | sbequ2 | |- ( x = y -> ( [ y / x ] ph -> ph ) ) |
|
3 | 1 2 | impbid | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |