Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 | |- ( x = y -> ( ph -> [ y / x ] ph ) ) |
|
| 2 | sbequ2 | |- ( x = y -> ( [ y / x ] ph -> ph ) ) |
|
| 3 | 1 2 | impbid | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |